ELECTRICAL GENERATORS AND EXCITATION SYSTEMS:

Selection, Applications, Operation, Troubleshooting, and Maintenance

INTRODUCTION

This seminar will provide a comprehensive understanding of the various types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems. This seminar will focus on maximizing the efficiency, reliability, and longevity of this type equipment by providing an understanding of the characteristics, selection criteria, common problems and repair techniques, preventive and predictive maintenance.

This seminar is a MUST for anyone who is involved in the selection, applications, or maintenance of generators, exciters, automatic voltage regulators (AVR’s), and protective systems because it covers how this equipment operates, the latest maintenance techniques, and provides guidelines and rules that ensure the successful operation of this equipment. In addition, this seminar will cover in detail the basic design, operating characteristics, specification, selection criteria, advanced fault detection techniques, critical components and all preventive and predictive maintenance methods in order to increase reliability of the equipment and reduce the operation and maintenance cost.

This seminar will provide the following information for all types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems:

- Basic Design
- Specification
- Selection Criteria
- Sizing Calculations
- Enclosures and Sealing Arrangements
- Codes and Standards
- Common Operational Problems
- All Diagnostics, Troubleshooting, Testing, and Maintenance

WHO SHOULD ATTEND

- Engineers of all disciplines
- Managers
- Technicians
- Maintenance personnel
- Other technical individuals (this seminar is suitable for individuals who do not have an electrical background)
SEMINAR OUTCOME

- **Equipment Operation:** Gain a thorough understanding of the operating characteristics of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

- **Equipment Diagnostics and Inspection:** Learn in detail all the diagnostic techniques and inspections required of critical components of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

- **Equipment Testing:** Understand thoroughly all the tests required for the various types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

- **Equipment Maintenance and Troubleshooting:** Determine all the maintenance and troubleshooting activities required to minimize the downtime and operating cost of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

- **Equipment Repair and Refurbishment:** Gain a detailed understanding of the various methods used to repair and refurbish generators, exciters, automatic voltage regulators (AVR’s), and protective systems

- **Efficiency, Reliability, and Longevity:** Learn the various methods used to maximize the efficiency, reliability, and longevity of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

- **Equipment Sizing:** Gain a detailed understanding of all the calculations and sizing techniques used for generators, exciters, automatic voltage regulators (AVR’s), and protective systems

- **Design Features:** Understand all the design features that improve the efficiency and reliability of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

- **Equipment Selection:** Learn how to select generators, exciters, automatic voltage regulators (AVR’s), and protective systems by using the performance characteristics and selection criteria that you will learn in this seminar

- **Equipment Enclosures and Sealing Methods** Learn about the various types of enclosures and sealing arrangements used for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
Equipment Commissioning: Understand all the commissioning requirements for generators, exciters, automatic voltage regulators (AVR’s), and protective systems

Equipment Codes and Standards: Learn all the codes and standards applicable for generators, exciters, automatic voltage regulators (AVR’s), and protective systems

Equipment Causes and Modes of Failure: Understand causes and modes of failure of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

System Design: Learn all the requirements for designing different types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

TRAINING METHODOLOGY

The instructor relies on a highly interactive training method to enhance the learning process. This method ensures that all the delegates gain a complete understanding of all the topics covered. The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught to their own organization.

SPECIAL FEATURE

Each delegate will receive a copy of the following materials written by the instructor:

2. Practical manual (300 pages)

PROGRAMME OUTLINE

Day 1 – Fundamentals of Electrical Systems, Synchronous Machines, Synchronous Generators

- Inductors, capacitors, alternating current, Faraday’s law, magnetic field, three-phase system
- Machinery principles, magnetic behavior of ferromagnetic materials, energy losses in a ferromagnetic core, core losses, permanent magnets
- Rotating magnetic field, relationship between electrical frequency and the speed of magnetic field rotation, RMS voltage in a three-phase stator, induced torque in a three-phase machine, winding insulation in ac machines, ac machine power flow and losses
Synchronous machines, physical description, pole pitch: electrical degrees, synchronous machine windings, field excitation, rotating rectifier excitation, series excitation, no-load and short-circuit values, torque tests, speed-torque characteristic, excitation of a synchronous machine, machine losses

Synchronous generators, construction, speed of rotation of a synchronous generator, equivalent circuit of a synchronous generator, power and torque in a synchronous generator, synchronous generator operating alone, parallel operation of ac generators, frequency-power and voltage-reactive power characteristics, synchronous generator ratings, synchronous generator capability curves, short-time operation and service factor

Day 2 – Generator Components, Auxiliaries and Excitation, Generator Main Connections, Double-Feed Generators, Performance and Operation of Generators

- Generator components, auxiliaries and excitation, the rotor, rotor windings, rotor end rings, wedges and dampers, sliprings, brushgear and shaft grounding, fans, rotor and threading alignment, vibration, bearings and seals,
- The stator, stator core, core frame, stator windings, end winding support, electrical connections and terminals, stator winding cooling components, hydrogen cooling components, stator casing,
- Cooling systems, hydrogen cooling, hydrogen cooling systems, shaft seals and seal oil systems, thrust-type seal, journal-type seal, stator winding water cooling systems,
- Excitation, AC excitation systems, exciter transient performance, pilot exciter, main exciter, exciter performance testing, pilot exciter protection, brushless excitation systems, rotating armature main exciter
- The voltage regulator, the power system stabilizer, characteristics of generator exciter power systems (GEP), generator operation,
- Generator main connections, isolated phase bus bar circulatory currents, system description
- Double-feed generators, system configuration, equivalent circuit for the brushless double-fed machine, parameter extraction, generator operation, converter rating, machine control
- Generator systems, condition monitoring, operation limitations, fault conditions

- Generator surveillance and testing, generator operational checks (surveillance and monitoring), generator diagnostic testing, insulation resistance and polarization
index, dc hipot test, ac tests for stator windings, synchronous machine rotor windings, partial discharge tests, mechanical tests

- Generator inspection and maintenance, on-load maintenance and monitoring, off-load maintenance, generator testing
- Generator operational problems, and refurbishment options, typical generator operational problems
- Generator rotor reliability and life expectancy, generator rotor refurbishment, generator rotor modifications, upgrades, and uprates
- Bearings and Lubrication, Types of bearings, ball and roller bearings, thrust bearings, lubrication, viscosity of lubricants, greases, VI improved oils
- Used oil analysis, test description and significance, visual and sensory inspection, chemical and physical tests
- Vibration analysis, resonance, vibration instrumentation, vibration analysis, vibration causes, vibration severity
- Power station electrical systems, and design requirements, system requirements, electrical system description, system performance, unit start-up, synchronization, shutdown and power trip, power plant outages and faults, uninterruptible power supply systems, dc systems
- Power station protective systems, design criteria, generator protection, dc tripping systems
- Frequently asked questions

Faculty

Philip Kiameh

Philip Kiameh, M.A.Sc., B.Eng., D.Eng., P.Eng. (Canada) has been a teacher at University of Toronto, Canada for 20 years. In addition, Prof Kiameh has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. Prof Kiameh has been consistently ranked as "Excellent" or "Very Good" by the delegates who attended his seminars and lectures.

Prof Kiameh wrote 6 books for working engineers from which four have been published by McGraw-Hill, New York. Below is a list of the books authored by Prof Kiameh:

5. Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).

Prof. Kiameh has received the following awards:

1. The first "Excellence in Teaching" award offered by the Professional Development Center at University of Toronto (May, 1996).

2. The "Excellence in Teaching Award" in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).

3. Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

Prof. Kiameh performed research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories. He also has more than 27 years of practical engineering experience with Ontario Power Generation (formerly, Ontario Hydro - the largest electric utility in North America).

While working at Ontario Hydro, Prof. Kiameh acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time that Prof Kiameh worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.
Later, Prof Kiameh worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by Prof Kiameh covered in detail the various equipment and systems used in power stations.

Professor Philip Kiameh was awarded his Bachelor of Engineering Degree "with distinction" from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

Course Fee

The fee for this course is 1,600 USD + applicable taxes for the 3-day seminar; 2,700.00 USD + applicable taxes for the 5-day seminar.

On-site Training

ETC seminars can be delivered on-site at your premises. For more information, please contact Mr. Philip Kiameh at p.kiameh@engineeringtrainingcentre.com or by phone in North America at 416-509-5052.

Group Discounts, Cancellations and Withdrawals

Registration will cover all seminar materials and refreshments which will be offered during breaks and lunch. For companies sending more than one delegate the following discounts will apply:

1- 10% discount to the second delegate,
2- 15% discount to the third delegate,
3- 20% discount to the fourth delegate,
4- 25% discount to the fifth and subsequent delegate registrations.

To withdraw from a course you must send your request, in writing, with a copy of the receipt to our office. The following conditions will apply: All cancellations received fifteen or more business days prior to the commencement of the seminar will receive full refund minus a 200 USD administration charge. All cancellations received less than fifteen business days prior to the commencement of the seminar will not be refunded. However, a credit of equal value will be provided for any future ETC seminar within the period of one year following the cancellation.

Note

1- In the event of an emergency a delegate who has registered for a seminar may allow a different person to attend in his/her place at no additional cost.
2- ETC reserves the right to cancel or change the date or location of its events. ETC is not responsible for the purchase of non-refundable travel arrangements or accommodation or any associated cancellation. To avoid any fees or charges, please contact ETC to confirm that the course is running before confirming travel arrangements and accommodations.